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Abstract—Nowadays, research topics on AI accelerator designs
have attracted great interest, where accelerating Deep Neural
Network (DNN) using Processing-in-Memory (PIM) platforms
is an actively-explored direction with great potential. PIM
platforms, which simultaneously aims to address power- and
memory-wall bottlenecks, have shown orders of performance
enhancement in comparison to the conventional computing
platforms with Von-Neumann architecture. As one direction of
accelerating DNN in PIM, resistive memory array (aka. crossbar)
has drawn great research interest owing to its analog current-
mode weighted summation operation which intrinsically matches
the dominant Multiplication-and-Accumulation (MAC) operation
in DNN, making it one of the most promising candidates.
An alternative direction for PIM-based DNN acceleration is
through bulk bit-wise logic operations directly performed on
the content in digital memories. Thanks to the high fault-
tolerant characteristic of DNN, the latest algorithmic progression
successfully quantized DNN parameters to low bit-width repre-
sentations, while maintaining competitive accuracy levels. Such
DNN quantization techniques essentially convert MAC operation
to much simpler addition/subtraction or comparison operations,
which can be performed by bulk bit-wise logic operations in a
highly parallel fashion. In this paper, we build a comprehensive
evaluation framework to quantitatively compare and analyze
aforementioned PIM based analog and digital approaches for
DNN acceleration.

Index Terms—Neural network acceleration, Processing-in-
memory, crossbar, in-memory bulk logic.

I. INTRODUCTION

Deep Neural Network (DNN) has achieved world-wide

attention due to outstanding performance in image recognition

over large scale data-set such as ImageNet [1], [2]. For

instance, ResNet shows a prominent recognition accuracy of

96.43%, which surpasses human beings (94.9%). Following

the trend, when going deeper in DNNs (e.g. ResNet employs

18-1001 layers), memory/computational resources and their

communication have faced inevitable limitations. This can be

interpreted as “DNN power- and memory-wall” [3], leading to

the development of different approaches to enhance the DNN

efficiency at either algorithm or hardware level.

In the last two decades, Processing-in-Memory (PIM) ar-

chitectures, as a potentially viable way to solve the memory

wall challenge, have been widely explored by existing works

[4]–[12]. The key concept behind PIM is to realize certain

operations in memory by leveraging the inherent parallel

computing mechanism and exploiting large internal memory

bandwidth. It could lead to remarkable savings in off-chip data

communication energy and latency. Ideally, the bulk bit-wise

operations in a PIM architecture is expected to support not

only DNN acceleration but also other data-intensive applica-

tions, such as graph processing, data encryption, etc. [9], [13].

For DNN acceleration, analog resistive crossbar memory, as

one of the most popular memory array structure, has drawn

great interest owing to its high memory accessing bandwidth

and in-situ computing capability. More importantly, its current-

mode weighted summation operation intrinsically matches

the dominant Multiplication-and-Accumulation (MAC) in the

artificial neural network, making it one of the most promising

candidates as the basic computing unit for neural network

accelerator design [6]. For example, ISAAC [14] architecture

improves throughput and energy by 14.8× and 5.5×, respec-

tively, relative to a well-known ASIC architecture. PipeLayer

[15] achieves the speedup and energy saving of 42.45×
and 7.17×, respectively, compared with a GPU platform on

average. However, many non-ideal effects, such as IR-drop

(i.e., wire resistance), Stuck-At-Fault (SAF), thermal noise,

shot and random telegraph noise [16], are hampering the

progress of real hardware implementation of large-scale DNNs

on ReRAM crossbar-based accelerators. Many recent works

have investigated such issues with either hardware or software

solutions [11], [17].
As an alternative solution to realize massive MAC and

memory operations in DNN deployments, researchers have

come up with quantized/binarized DNNs, through constraining

weights and activations of DNN to be quantized/ binarized in

forward propagation [18], [19]. These modifications convert

the conventional MAC operation to much simpler bulk bit-

wise operations (based addition/subtraction [20] or comparison

[10]) that can be accelerated in the content of existing digital

memories. For example, Neural Cache [21], as an SRAM-

based platform, improves inference latency by 18.3× over the

state-of-the-art multicore CPU (Xeon E5), 7.7× over server

class GPU. DRISA [7], as a DRAM-based platform, employs

3T1C- and 1T1C-based computing mechanisms and achieves

7.7× speedup and 15× better energy-efficiency over GPUs

for DNN accelerations. CMP-PIM [10], as an MRAM-based

platform achieves ∼ 10× better energy efficiency compared

to DNN-ReRAM accelerator.

While the respective benefits of the aforementioned DNN

acceleration-in-memory approaches (i.e. analog and digital)

are well known, it still lacks cross-technology comparison and

analysis. In this paper, we first briefly review some of existing
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Fig. 1. Hardware implementation of a single M×M ReRAM crossbar array
pair (positive and negative array) as an analog dot-product engine [16].

PIM platforms and then build a comprehensive cross-layer

evaluation platform to quantitatively compare and analyze

the analog and digital approaches for DNN acceleration-in-

memory schemes.

II. ACCELERATION BASED ON ANALOG CROSSBAR

The primary computation performed by an analog ReRAM

crossbar is the current-mode weighted summation operation

(i.e., dot-product), where the architecture of the crossbar and

its peripheral circuits are described in Fig. 1. Note that the pos-

itive and negative array setup is widely used in crossbar-based

dot-product engine [16], [22]–[24] for performing convolution

computation with positive and negative kernel values.

As shown in Fig. 1, the n-bit binary bit-strings ini[n] are

the inputs to the crossbar array, which is first converted by

the digital-to-analog converter (DAC) array into voltages Vi.

Since the reference voltage Vref is set to VDD/2, the current

forward into the differential ADC in the j-th column pair (i.e.,

two corresponding columns in the positive and the negative

array) can be described as:

IADC,j =

M∑

i=1

(
(Vi − Vref) · (G+

i,j −G−i,j)

)
(1)

where G±
i,j is the conductance of ReRAM cell indexed by

i and j in the positive and negative array respectively. As

can be seen, Eq. (1) performs the dot-product computation

between two vectors V − Vref and G+
:,j −G−

:,j . However, for

using the ReRAM crossbar array to accelerate the dot-product

computation in DNN, a software-hardware co-design is es-

sential, since mapping the DNN parameters into the crossbar-

based accelerator requires a series of signal conversions as

introduced in [15], [16].

III. ACCELERATION BASED ON DIGITAL MEMORIES

In this section, we briefly review some recent digital PIM

platforms supported by different memory technologies (i.e,

DRAM, SRAM, MRAM, and ReRAM), where their bench-

marking method and results are reported in Section IV and V,

respectively. To accelerate DNN leveraging digital memories,

the network parameters (inputs/weights) parameters are first
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Fig. 2. (a) Ambit’s TRA [8], (b) DRISA’s 3T1C [7], (c) DRISA’s 1T1C-logic
[7]. Glossary- Di/Dj : input rows data, Dk: initialized row data, Dr result
row data.

quantized to low bit-width representations [7], [10], [12], [21],

which converts a MAC operation into much simpler bulk bit-

wise operations such as addition or comparison. Then, the

quantized network can be readily mapped and accelerated us-

ing bulk bit-wise operations of digital computational memory.

A. DRAM

To realize bulk bit-wise operations on a DRAM platform,

Ambit [8] extends the copy-initialization idea of RowClone
[25] by implementing 3-input majority (Maj3)-based opera-

tions in memory, through issuing the ACTIVATE command to

three rows simultaneously followed by a single PRECHARGE
command, so-called Triple Row Activation (TRA) mechanism.

As shown in Fig. 2a, considering one row as the control

initialized by Dk= 0/1, Ambit can readily implement in-

memory AND2/OR2 in addition to Maj3 functions via the

charge sharing among the activated cells (i.e., Dk, Di and

Dj). Then, the computed result is written back to Dr cell

within the same Bit-Line (BL). Ambit also leverages the TRA

mechanism along with Dual Contact Cells (DCC) [8] to realize

the complementary functions. However, though Ambit shows

only 1% area increase over the commodity DRAM chip, it

suffers from multi-cycle PIM operations while implementing

more complex TRA-based functions (e.g., XOR2/XNOR2).

Besides, the DRAM platforms suffer from the initial data

overwritten problem, which in turn imposes long-latency in-

memory operations. For example, given R=AopB function (op
∈ AND2/OR2), the TRA-based method [8] takes 4 consecutive

steps to calculate one result: (1) RowClone data of row A

to row Di (Copying the first operand to a different row to

avoid data-overwritten); (2) RowClone of row B to Dj ; (3)

RowClone of ctrl row to Dk (Copying initialized control row

to a computation row); (4) TRA and RowClone data of row

Di to R row (Computation and Writing-back the result).

DRISA-3T1C method [7] utilizes the early 3-transistor

DRAM design, where each DRAM cell is controlled by two

separated read/write access transistors, and an additional tran-

sistor to decouple the capacitor from the read bit-line (rBL),

as shown in Fig. 2b. This additional transistor connects the

two DRAM cells on the rBL in a NOR style, which naturally

performs functionally-complete NOR2 function. Nevertheless,

DRISA-3T1C imposes very large area overhead (2T per cell)
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Fig. 3. Neural Cache [21] as a processing-in-SRAM platform. Note that this
platform is developed based on Compute Cache [26].

compared to conventional DRAM array, and still requires

multi-cycle operations for complex logic operations. DRISA-

1T1C method [7] offers to perform PIM through upgrading

the sense amplifier unit by adding a CMOS logic gate in

conjunction with a latch, as depicted in Fig. 2c. Thanks to

the add-on circuitry, such an inherently-multi-cycle operation

can enhance the performance of a single function in two

consecutive cycles. In the first cycle, Di is read out and

stored in the latch. Then, in the second cycle, Dj is sensed

to perform the computation. However, this design imposes

excessive cycles to implement other logic functions and at

least 12 transistors to each sense amplifier.

B. SRAM

To realize bulk bit-wise operations in an SRAM array,

the researchers have developed various solutions, through

modifying either the standard SRAM cell [27]–[29] or the

sense amplifier designs [21], [26]. Compute cache [26] is

designed to support several simple operations (e.g., bit-wise

logic and copy). It simultaneously activates two rows which

in turn an AND2 operation is performed by sensing BL.

Similarly, a NOR2 operation can be performed by sensing

bit-line complement (BL). As shown in Fig. 3, the Neural
Cache [21] as an extension to Compute cache, supports even

more complex operations such as addition by adding logic

gates into SA and activating the corresponding WLs. Based on

this, the Neural Cache platform is capable of fully processing

different DNN layers including convolutional, fully connected,

and pooling layers in-cache. In addition, it also supports

quantization in-cache.

C. NVM

There are many of PIM accelerators representing either

reconfigurable platforms or application-specific logic designs

within Non-Volatile Memories (NVMs) [6], [9], [13]. Due

to space limit, we take one NVM based in-memory logic

design introduced in GraphS [30] as an example to perform in-

memory computation within different NVM technologies. Fig.

4a-c shows the computational sub-array architecture of GraphS

[30], implemented by these technologies, respectively. The

architecture mainly consists of Memory Row Decoder (MRD),

Memory Column Decoder (MCD), and Sense Amplifier (SA),
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Fig. 4. GraphS [30] as a processing-in-resistive memory platform: (a)
STT-MRAM implementation, (b) SOT-MRAM implementation, (c) ReRAM
implementation, (d) Reconfigurable SA and the idea of voltage comparison
between sense voltage and reference voltage for memory read, 2-input logic,
and 3-input logic.

and can be adjusted by a Ctrl unit to work in a dual mode that

performs both memory write/read and in-memory digital logic

operations. Each STT-MRAM, SOT-MRAM, and ReRAM

cells located in the computational sub-arrays is associated with

the Word Lines (WL) and Bit Lines (BL) to perform typical

memory read/write operations. In addition, the computational

sub-array is designed to perform bulk bit-wise operations

between in-memory operands using two distinct methods

referred to as 2-row activation and 3-column activation. The

main ideas behind the 2-row and 3-column activation methods

are to perform bulk bit-wise in-memory (N)AND/(N)OR op-

eration and in-memory addition/subtraction, respectively. The

reconfigurable SA, as depicted in Fig. 4d, consists of three sub-

SAs and a total of six reference-resistance branches that can be

selected by enable bits (ENM , ENOR3, ENOR2, ENMAJ ,

ENAND3, ENAND2) by the sub-array’s Ctrl to realize the

memory and computation schemes. Such reconfigurable SA

could implement memory read and one-threshold based logic

functions by only activating one enable at a time, e.g., by

setting ENAND2 to ‘1’, 2-input AND/NAND logic can be

readily implemented between operands located in the same

bit line. Meanwhile, by activating two or three enables at

a time, two or three logic functions can be simultaneously

implemented and further used to generate complex logic

functions like XOR3/XNOR3 and even full-adder in a single

memory cycle. The key idea to perform memory read and bit-

line computing is to choose different thresholds (references)

when sensing the selected memory cell(s). The idea of voltage

comparison for memory read and computation is shown in

Fig. 4d, as well, the selected cells are addressed to generate a

sense voltage (V sense), which will be compared with selected

reference voltage generated by enable bits. Now, if the path

resistance is higher (/lower) than the reference resistance, the

SA produces high (/low) voltage indicating logic ‘1’ (/‘0’).
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TABLE I
SIMULATION RESULTS FOR DIFFERENT PROCESSING-IN-MEMORY ACCELERATORS. IN AREA PART, M DENOTES MEMORY DIE AREA, AND C DENOTES

COMPUTATION AREA OVERHEAD. (ISO-CAPACITY: 32MBIT-SINGLE BANK, DATA WIDTH: 512-BIT)

Digital Analog

Metrics SOT-MRAM† STT-MRAM‡ ReRAM† SRAM∗ DRAM§ ReRAM∗∗
Non-volatility Yes Yes Yes No No Yes

Area (mm2)
M: 7.06
C: 0.3

M: 2.14
C: 0.3

M: 3.92
C: 0.4

M: 10.38
C: 0.5

M: 4.53
C: 0.04

M: 3.34
C: 2.5

Read Latency (ns) 2.85 1.90 1.65 2.9 3.4 1.48
Write Latency (ns) 2.59 5.29 19.8 2.7 3.4 20.9

Read Dynamic Energy (nJ) 0.57 0.37 0.76 0.34 0.66 0.38
Write Dynamic Energy (nJ) 0.66 0.67 2.9 0.38 0.66 2.7

(N)AND/(N)OR
Computation Energy (nJ)

0.64 0.46 1.13 0.59 0.75
1.96 per MAC

Full Adder
Computation Energy (nJ)

1.92 1.59 3.4 1.18 11.25

Leakage Power (mW) 550 410.2 362.4 5243 335.5 587.6

Endurance 1010 − 1015 1010 − 1015 105 − 1010 Unlimited 1015 105 − 1010

Data over-written issue No No No No Yes No
†implemented based on [30]. ‡implemented based on [9]. ∗implemented based on [21]. §implemented based on [8]. ∗∗implemented based on [22].

IV. PROPOSED BOTTOM-UP EVALUATION FRAMEWORK

To perform the cross-technology comparison among afore-

mentioned PIM techniques, we have developed a comprehen-

sive bottom-up cross-layer framework shown in Fig. 5.

1- For Device level, the device-level model was first ex-

tracted from different assessments and models. For example,

we jointly use the Non-Equilibrium Green’s Function (NEGF)

and Landau-Lifshitz-Gilbert (LLG) equations to model STT-

MRAM and SOT-MRAM bitcell (indicated under MRAM in

Fig. 5) [31], [32]. We used the default ReRAM and SRAM

.cell configuration of NVSim [33]. Moreover, DRAM cell

parameters were taken and scaled from Rambus [34].

2- For Circuit level simulation, we developed a 256×256

memory sub-array for each technology with peripheral circuity

(SA, MRD, MCD, etc.) based on an existing PIM plat-

form (GraphS [30] logic design for SOT-MRAM and digital

ReRAM; STT-CiM [9] as the STT-MRAM design; BCNN-

ReRAM [22] design for analog ReRAM crossbar; Neural

Cache [21] design for SRAM; Ambit [8] design for DRAM).

The memory sub-arrays are simulated in Cadence Spectre with

45nm NCSU Product Development Kit (PDK) library [35] to

verify the PIM’s circuit functionality and achieve the circuit

performance parameters. The memory controller circuits for

all platforms are synthesized by Design Compiler [36] with

the same 45nm industry library.

3- For Architecture level, we developed PIM libraries for

each platforms on top of NVSim [33] and Cacti [37] based on

device/circuit level data and extract the performance data (i.e.

delay, energy, area) for different PIM platforms w.r.t. a single

input memory configuration file (.cfg).

4- For Application level simulations, a behavioral-level

simulator was developed in Matlab taking architecture-level

results to calculate the latency, energy, and area that different

PIM platforms spend on DNN acceleration task.

V. PERFORMANCE ANALYSIS

In this section, we perform two distinct experiments under

ISO-Capacity and ISO-Computation constraints to compare

analog and digital PIM approaches.
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Fig. 5. The bottom-up evaluation framework developed for PIM platform
evaluation.

A. ISO-Memory-Capacity Comparison

We first study the performance of digital and analog PIM

platforms with an ISO-memory-capacity constraint. We de-

veloped a 32Mb, single bank unit based on digital (SOT-

MRAM, STT-MRAM, ReRAM, SRAM, and DRAM) and

analog ReRAM crossbar. Table I reports eleven performance

parameters for each platform. We list our observations below:

a) Area: We divide the area metric into two parts: mem-

ory die area (M), and computational area (C) which includes

controller, modified decoder, SA, 8-bit ADC for the relevant

analog ReRAM crossbar, etc. In terms of memory die area, the

digital PIM platforms impose a relatively larger area than that

of analog ReRAM cross-bar exept for STT-MRAM design [9].

However, if we take the computational area into account, the

ReRAM crossbar consumes 2.5 mm2, which is much larger

than that of digital counterparts, such as digital ReRAM (0.4

mm2). Accordingly, we can define a memory to computational

area ratio as M/C. The M/C ratio equals to 23.53, for SOT-

MRAM based PIM, while the analog ReRAM crossbar shows

a ratio of 1.33. The low M/C ratio of ReRAM crossbar is

the consequence of large peripheral circuit’s overhead, such

as buffers and DAC/ADC, which contributes more than 85%
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TABLE II
ESTIMATED ROW PERFORMANCE OF DIFFERENT PIMS WITHOUT PARALLELISM TECHNIQUES

Digital Analog
Parameters SOT-MRAM STT-MRAM ReRAM SRAM DRAM ReRAM

Area (mm2)
(memory + logic)

0.018
∼(0.0172+0.0008)

∼0.012
∼(0.011+0.0008)

0.0097
∼(0.009+0.0007)

0.64
∼(0.608+0.032)

0.16
∼(0.158 + 0.002)

0.06
∼(0.011+0.049)

Energy (μJ)
(write-back+read-based Ops)

0.85
∼(0.31+0.54)

0.78
∼(0.25+0.53)

1.9
∼(0.75+1.15)

1.6
∼(0.42+1.18)

2.1
∼(0.8+1.3)

13.5
∼(0+13.5)

Latency (ms) 0.9 1.8 1.3 0.7 13.5 5.8

of the computational area [6], [22]. Furthermore, according to

the results reported in Table I, the STT-MRAM and SRAM

platforms occupy the smallest and the largest overall area,

respectively, in comparison to other PIM counterparts.
b) Latency: As listed in Table I, the analog ReRAM

crossbar achieves the shortest read latency (1.48 ns) as com-

pared with digital platforms, but it has the longest write latency

(20.9 ns). The SOT-MRAM platform achieves the shortest

write latency compared to other technologies, and has a higher

endurance (1010-1015) compared to ReRAM-based platforms.
c) Energy: We can see that SOT-MRAM and STT-

MRAM platforms consume the smallest write dynamic energy

among all the NVM platforms, due to its intrinsically low-

power device operation, while SRAM achieves the smallest

read and write energy compared to all the platforms. The ana-

log ReRAM crossbar achieves a close-to-SRAM read dynamic

energy, but it consumes a large write dynamic energy. In terms

of computational energy, for digital platforms, it is measured

based on the PIM’s capability to perform (N)AND/(N)OR and

full adder functions. As seen from Table I, the STT-MRAM

[9] and SRAM [21] PIM respectively consume the smallest

computational energy compared to different technologies to

perform different operations, where SOT-MRAM stands as the

third most energy-efficient platform. Note that, although the

DRAM PIM design based on Ambit [8] consumes 0.75 nJ to

perform (N)AND/(N)OR based TRA mechanism, it requires

over 14 memory cycles to perform the addition operation to

avoid overwriting data, which leads to much higher energy

consumption compared to other platforms. For the analog

crossbar, we report the computational energy per MAC, which

is comparable with addition operation in digital SOT-MRAM

platform. In terms of leakage power consumption, the digital

ReRAM along with DRAM can be observed as relatively

more power efficient platforms. Moreover, we observe that

the SRAM platform consumes ∼14.5× and ∼9× more power

as compared to digital and analog ReRAM, respectively.

B. ISO-Computation Comparison

In this subsection, we evaluate the performance of the digital

and analog PIM platforms for DNN acceleration. Hereby,

we take the classical LeNet-5 [38] as a simple example, to

perform the hand written digit classification task with MNIST

dataset. For properly mapping the target DNN into the PIM,

offline training of the LeNet-5 network is conducted with

weight and activation quantization, following the methods

proposed in [18], [39]. A description model of each platform

developed based on the data reported in Table I is employed

in the application level DNN simulator. For fair hardware

comparison, we use the bit-width configuration of [1:8] for

[Weight:Activation], although ReRAM crossbar based accel-

erator supports higher weight bit-width (> 1 bit) with better

DNN performance (i.e., classification accuracy in this work).

No quantization is applied in the first and last layer of DNN,

and the full-precision computations are also handled by the

PIM-based accelerator. For the sake of simplicity, we only

reflect the estimated performance results (area, energy, latency)

of convolutional layers.

a) Area: Contrary to the approach used to report the

area in Table I, we leverage the method presented in [10],

[22] to report the results. Specifically, we consider the area

overhead due to computation by calculating the number of

crossbars or sub-arrays. Table II reports the area for digital

and analog PIM platforms by dividing it into the memory and

logic parts. We observe that the digital ReRAM and STT-

MRAM platforms require the smallest area compared to other

platforms, respectively, mainly owning to their single transistor

cell structure. It is noteworthy that, while the DRAM platform

has one of the least die areas owning to its single-transistor

cell, and owns the least computational area under ISO-capacity

constraint due to its almost unchanged peripheral circuitry (1%

as listed in Table I), it requires accessing to multiple sub-

arrays to avoid overwriting data problem as well as fitting the

network at the same time, resulting in a larger area requirement

compared to NVMs. As for the analog crossbar platform, the

logic part contributes ∼4× more than memory area. Overall, it

imposes larger area than that of other digital NVM platforms

due to matrix splitting and extra large add-on area overhead

[6].

b) Energy: Table II also reports the energy consumption

of different platforms. It can be seen that SOT-MRAM and

STT-MRAM based platforms save 15.8× and 17.3× energy

compared to the analog crossbar. In addition, the digital

volatile memories consume much smaller energy to that of the

analog platform. Therefore, from energy saving stand point,

digital PIM platforms could be a better choice in compar-

ison to the analog crossbar. Note that, for PIM platforms,

all operands are assumed to be stored in memory. Unlike

traditional computation, an extra intermediate data write-back

is needed, which has a large effect on the overall energy and

latency. Based on this, we split the reported energy into write-

back and read-based logic operations energy. The write-back

energy involves the energy required to write the weights or

inputs into PIM plus the energy required write the computation

results back to the memory for computation in the next layer.

The read-based operation energy involves the read and bit-line

computing energy. The analog crossbar [22] can accomplish

the MAC operation without writing back the intermediate data,
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that’s why we omit the write-back energy for this platform.

c) Latency: We summarize the latency of each platform

required to process the convolutional layers of the CNN,

as tabulated in Table II. According to the table, the SRAM

platform is the fastest one with 0.7 ms latency. This mainly

comes from its short read and write latency as well as fast

two-cycle addition scheme [21]. In addition, we observe that

the SOT-MRAM platform achieves 0.9 ms latency and stands

as the second fastest platform. The DRAM platform shows

an extremely long latency mainly due to the excessive copy

operations needed to avoid overwriting data, as explained in

Section III.A. The analog crossbar needs 5.8 ms to process

the convolutional layers.

VI. CONCLUSION

To accelerate DNN in PIM platforms, the analog current-

mode weighted summation operation in resistive memory

crossbars intrinsically matches the dominant MAC operation

in the DNN. Alternatively, latest algorithmic progression has

brought competitive classification accuracy for neural net-

works despite constraining the network parameters to limited-

bit representations, which essentially converts the MAC op-

eration to much simpler bulk bit-wise operations such as

addition or comparison that can be accelerated inside existing

digital memories (e.g., SRAM, DRAM, MRAM). In this

paper, we presented a comprehensive evaluation platform to

quantitatively compare such analog and digital PIM platforms

based on different technologies to provide a guideline to the

research community. We reported our observations considering

three key evaluation metrics i.e. area, energy, latency.
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